
Sourcecode: Example1.c

Sourcecode: Example1.c ii

COLLABORATORS

TITLE :

Sourcecode: Example1.c

ACTION NAME DATE SIGNATURE

WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Sourcecode: Example1.c iii

Contents

1 Sourcecode: Example1.c 1

1.1 Example1.c . 1

Sourcecode: Example1.c 1 / 3

Chapter 1

Sourcecode: Example1.c

1.1 Example1.c

/***/
/* */
/* Amiga C Encyclopedia (ACE) Amiga C Club (ACC) */
/* -------------------------- ------------------ */
/* */
/* Manual: AmigaDOS Amiga C Club */
/* Chapter: Files Tulevagen 22 */
/* File: Example1.c 181 41 LIDINGO */
/* Author: Anders Bjerin SWEDEN */
/* Date: 93-03-11 */
/* Version: 1.1 */
/* */
/* Copyright 1993, Anders Bjerin - Amiga C Club (ACC) */
/* */
/* Registered members may use this program freely in their */
/* own commercial/noncommercial programs/articles. */
/* */
/***/

/* This program collects ten integer values from the user, and */
/* saves them in a file called "HighScore.dat" on the RAM disk. */

/* Include the dos library definitions: */
#include <dos/dos.h>

/* Now we include the necessary function prototype files: */
#include <clib/dos_protos.h> /* General dos functions... */
#include <stdio.h> /* Std functions [printf()...] */
#include <stdlib.h> /* Std functions [exit()...] */

/* Set name and version number: */
UBYTE *version = "$VER: AmigaDOS/InputOutput/Example1 1.1";

Sourcecode: Example1.c 2 / 3

/* Declared our own function(s): */

/* Our main function: */
int main(int argc, char *argv[]);

/* Main function: */

int main(int argc, char *argv[])
{

/* A "BCPL" pointer to our file: */
BPTR my_file;

/* The numbers: (10 integers will be saved) */
int my_highscore[10];

/* Store here the number of bytes actually written: */
long bytes_written;

/* A simple loop variable: */
int loop;

/* Let the user enter ten integer values: */
printf("Please enter ten integer values:\n");
for(loop=0; loop < 10; loop++)
{

printf("Value [%d]: ", loop);
scanf("%d", &my_highscore[loop]);

}

/* Try to open file "RAM:HighScore.dat" as a new file: (If */
/* the file does not exist, it will be created. If it, on */
/* the the other hand, exist, it will be overwritten.) */
my_file = Open("RAM:HighScore.dat", MODE_NEWFILE);

/* Have we opened the file successfully? */
if(!my_file)
{

/* Inform the user: */
printf("Error! Could not open the file!\n");

/* Exit with an error code: */
exit(20);

}

/* The file has now been opened: */
printf("File open!\n");

/* We have now opened a file and the file cursor is */

Sourcecode: Example1.c 3 / 3

/* pointing to the first byte (character) in our new */
/* file. We can now start to write: */
bytes_written = Write(my_file, my_highscore, sizeof(my_highscore));

/* Did we write all data? */
if(bytes_written != sizeof(my_highscore))
{

/* No! The numbers actually written was less */
/* than we wanted to write! */
printf("Error! Could not save all values!\n");

}
else
{

/* Yes, all numbers have been written to the file! */
printf("All values were saved successfully!\n");

}

/* Since we store 10 integer values the file should be 40 bytes */
/* long. 1 integer (32 bits) = 4 bytes, 10 integers (320 bits) = */
/* 40 bytes. */

/* Close the file. With V36 or higher the Close() function */
/* will return a boolean value, TRUE if the file was */
/* successfully closed, FALS if the file could not be */
/* closed. If the file could not be closed there is sadly */
/* very little we can do about it. We should never try to */
/* close a file after it has been closed, successfully or */
/* not! Even if the actual file could not be closed most of */
/* the memory used by the filehandler will still have been */
/* deallocated. */
/* */
/* In most cases you can simply ignore what the Close() */
/* function returns since you can not do much about it. */
/* However, if you have saved important data in the file */
/* you might want to open a new file and save it all again */
/* just to be on the safe side. Before you may do this you */
/* should of course ask for the user’s permission. */
if(Close(my_file))

printf("File closed!\n");
else

printf("Error! File could not be closed!\n");

/* Remember that even if the file could not be */
/* closed we must NOT try to close it again! */

/* The End! */
exit(0);

}

	Sourcecode: Example1.c
	Example1.c

